Metrics for sparse graphs
نویسندگان
چکیده
Recently, Bollobás, Janson and Riordan introduced a very general family of random graph models, producing inhomogeneous random graphs with Θ(n) edges. Roughly speaking, there is one model for each kernel, i.e., each symmetric measurable function from [0, 1] to the non-negative reals, although the details are much more complicated, to ensure the exact inclusion of many of the recent models for large-scale real-world networks. A different connection between kernels and random graphs arises in the recent work of Borgs, Chayes, Lovász, Sós, Szegedy and Vesztergombi. They introduced several natural metrics on dense graphs (graphs with n vertices and Θ(n) edges), showed that these metrics are equivalent, and gave a description of the completion of the space of all graphs with respect to any of these metrics in terms of graphons, which are essentially bounded kernels. One of the most appealing aspects of this work is the message that sequences of inhomogeneous quasi-random graphs are in a sense completely general: any sequence of dense graphs contains such a subsequence. Alternatively, their results show that certain natural models of dense inhomogeneous random graphs (one for each graphon) cover the space of dense graphs: there is one model for each point of the completion, producing graphs that converge to this point. Our aim here is to briefly survey these results, and then to investigate to what extent they can be generalized to graphs with o(n) edges. Although many of the definitions extend in a simple way, the connections between the various metrics, and between the metrics and random graph models, turn out to be much more complicated than in the dense case. We shall prove many partial results, and state even more conjectures and open problems, whose resolution would greatly enhance the currently rather unsatisfactory theory of metrics on sparse graphs. This paper deals mainly with graphs with o(n) but ω(n) edges: a companion paper will discuss the (more problematic still) case of extremely sparse graphs, with
منابع مشابه
A family of metrics for biopolymers based on counting independent sets
We introduce a new family of metrics for graphs of fixed size, based on counting-independent sets. Our definition is simpler and easier to calculate than the edge ideal metric family defined by Llabrés and Rosselló without loosing any of its abstract properties. We contrast them on some examples with graphs that represent protein secondary and three-dimensional (3D) structures. We conclude that...
متن کاملSparse graphs: Metrics and random models
Recently, Bollobás, Janson and Riordan introduced a very general family of random graph models, producing inhomogeneous random graphs with Θ(n) edges. Roughly speaking, there is one model for each kernel, i.e., each symmetric measurable function from [0, 1] to the non-negative reals, although the details are much more complicated, to ensure the exact inclusion of many of the recent models for l...
متن کاملAn L Theory of Sparse Graph Convergence I: Limits, Sparse Random Graph Models, and Power Law Distributions
We introduce and develop a theory of limits for sequences of sparse graphs based on Lp graphons, which generalizes both the existing L∞ theory of dense graph limits and its extension by Bollobás and Riordan to sparse graphs without dense spots. In doing so, we replace the no dense spots hypothesis with weaker assumptions, which allow us to analyze graphs with power law degree distributions. Thi...
متن کاملEuclidean vs Graph Metric
The theory of sparse graph limits concerns itself with versions of local convergence and global convergence, see e.g. [41]. Informally, in local convergence we look at a large neighborhood around a random uniformly chosen vertex in a graph and in global convergence we observe the whole graph from afar. In this note rather than surveying the general theory we will consider some concrete examples...
متن کاملFusion of Thermal Infrared and Visible Images Based on Multi-scale Transform and Sparse Representation
Due to the differences between the visible and thermal infrared images, combination of these two types of images is essential for better understanding the characteristics of targets and the environment. Thermal infrared images have most importance to distinguish targets from the background based on the radiation differences, which work well in all-weather and day/night conditions also in land s...
متن کامل